
// Smart Contract Security Assessment 12.02.2024 - 12.03.2024

Thunderhead -

stMOVE Contracts

Movement Labs

T h u n d e r h ea d - st M OV E C o n t ra c t s - M ove m e n t L a b s

Prepared by: HALBORN

Last Updated 12/04/2024

Date of Engagement by: December 2nd, 2024 - December 3rd, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

5

CRITICAL

0

HIGH

0

MEDIUM

1

LOW

2

INFORMATIONAL

2

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Inadequate share rate update validation
7.2 Race condition in allowance updates with approve
7.3 Potential inconsistent validation rules for share rate modifications
7.4 Share rate evolution allows for more burning than the assets deposited
7.5 Fstmove destructed not fully implemented

0%

1 . I n t r o d u c t i o n

Thunderhead engaged Halborn to conduct a security assessment on their smart contracts
beginning on December 2nd and ending on December 3rd, 2024. The security assessment was
scoped to the smart contracts provided to the Halborn team.

Commit hashes and further details can be found in the Scope section of this report.

2. A s s e s s m e n t S u m m a r y

The team at Halborn assigned a full-time security engineer to assess the security of the smart
contracts. The security engineer is a blockchain and smart-contract security expert with
advanced penetration testing, smart-contract hacking, and deep knowledge of multiple blockchain
protocols.

The purpose of this assessment is to:

Ensure that smart contract functions operate as intended.
Identify potential security issues with the smart contracts.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks,
which should be addressed by the Thunderhead team. The main ones were the following:

When updating rates, ensure that the proposed rate is greater than or equal
to current one at the time of the transaction.

Remove or deprecate the approve function and instead implement
increaseAllowance and decreaseAllowance.

Introduce a similar validation mechanism in the rebaseByShareRate function as
is done in rebaseByApr.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual review of the code and automated security testing to
balance e�ciency, timeliness, practicality, and accuracy in regard to the scope of the smart
contract assessment. While manual testing is recommended to uncover flaws in logic, process,
and implementation; automated testing techniques help enhance coverage of smart contracts and
can quickly identify items that do not follow security best practices. The following phases and
associated tools were used throughout the term of the assessment:

Research into the architecture, purpose, and use of the platform.
Smart contract manual code review and walkthrough to identify any logic issue.
Thorough assessment of safety and usage of critical Solidity variables and functions in

scope that could lead to arithmetic related vulnerabilities.
Manual testing by custom scripts.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Static Analysis of security for scoped contract, and imported functions. (Slither).
Local or public testnet deployment (Foundry, Remix IDE).

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a
Severity Coe�cient. This system is inspired by the industry standard Common Vulnerability
Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical
means by which vulnerabilities can be exploited and Impact describes the consequences of a
successful exploit.

The Severity Coe�cients is designed to further refine the accuracy of the ranking with two
factors: Reversibility and Scope. These capture the impact of the vulnerability on the environment
as well as the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to
the highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level
of risk to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a
single transaction on the relevant blockchain. Includes but is not limited to financial and
computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

M E

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract
due to a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized
users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

M E

E

E = m ∏ e

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

M I

I

I = max(m) +I

4
m − max(m)∑ I I

C

r

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coe�cient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

s

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: stmove-contracts-eth

(b) Assessed Commit ID: b3df842

(c) Items in scope:

src/token/fstMOVE.sol
src/Lock.sol

Out-of-Scope: Third party dependencies and economic attacks.

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

1

LOW

2

INFORMATIONAL

2

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL-02 - INADEQUATE SHARE RATE UPDATE
VALIDATION

MEDIUM -

HAL-03 - RACE CONDITION IN ALLOWANCE
UPDATES WITH APPROVE

LOW -

https://github.com/thunderhead-labs/stmove-contracts-eth

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL-04 - POTENTIAL INCONSISTENT VALIDATION
RULES FOR SHARE RATE MODIFICATIONS

LOW -

HAL-05 - SHARE RATE EVOLUTION ALLOWS FOR
MORE BURNING THAN THE ASSETS DEPOSITED

INFORMATIONAL -

HAL-01 - FSTMOVE DESTRUCTED NOT FULLY
IMPLEMENTED

INFORMATIONAL -

7. F I N D I N G S & T EC H D E TA I L S

7.1 (H A L - 0 2) I N A D EQ UAT E S H A R E R AT E U P DAT E

VA L I DAT I O N

// MEDIUM

Description

The rebaseByShareRate function in the fstMove contract is currently validating that
nextShareRate_ is not less than lastShareRate. However, this check might not prevent
scenarios where nextShareRate_ could still be less than the current shareRate() at the time of
the update. This can result in the nextShareRate being set lower than the most recent
shareRate(), potentially leading to inaccurate rebase calculations and impacting the financial
integrity of the system.

Code Location

The rebaseByShareRate function is validating that nextShareRate_ is not less than
lastShareRate:

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:N (6.3)

Recommendation

It is recommended to modify the validation within the rebaseByShareRate function. Specifically,
the condition should be updated to ensure that nextShareRate_ is greater than or equal to
shareRate() at the time of the transaction.

 functionfunction rebaseByShareRaterebaseByShareRate((uint256uint256 nextShareRate_ nextShareRate_,, uint256uint256 upd upd
 ifif ((nextShareRate_ nextShareRate_ << lastShareRate lastShareRate)) revertrevert NegativeRebaseNNegativeRebaseN
 ifif ((updateEnd_ updateEnd_ << block block..timestamptimestamp)) revertrevert UpdateMustBeInFutUpdateMustBeInFut

 lastShareRate lastShareRate == shareRateshareRate(());;
 updateStart updateStart == block block..timestamptimestamp;;

 updateEnd updateEnd == updateEnd_ updateEnd_;;
 nextShareRate nextShareRate == nextShareRate_ nextShareRate_;;

 emitemit RebaseRebase((nextShareRate_nextShareRate_,, updateEnd_ updateEnd_));;
 }}

240240
241241
242242
243243
244244
245245
246246
247247
248248
249249
250250
251251

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:M/Y:N

7. 2 (H A L - 0 3) R AC E C O N D I T I O N I N A L LOWA N C E U P DAT ES

WI T H A P P ROV E

// LOW

Description

The fstMOVE contract includes the standard ERC-20 approve() function, which allows a user to
set a spender's allowance. However, this function can lead to a well-known race condition
vulnerability if a user updates an existing allowance without first setting it to zero. This allows a
spender to exploit the window between the old and new approval to transfer tokens using the old
higher allowance, potentially leading to unauthorized transfers.

Code Location

The approve() function can lead to a race condition vulnerability if a user updates an existing
allowance without first setting it to zero:

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:N (4.2)

Recommendation
It is recommended to either remove or deprecate the approve() function and instead implement
increaseAllowance() and decreaseAllowance() functions.

 functionfunction approveapprove((addressaddress spender spender,, uint256uint256 value value)) publicpublic virtua virtua
 ifif ((!!_whitelisted_whitelisted[[spenderspender]])) {{
 revertrevert NotWhitelistedNotWhitelisted(());;
 }}

 addressaddress owner owner == _msgSender_msgSender(());;
 _approve_approve((ownerowner,, spender spender,, value value));;
 returnreturn truetrue;;
 }}

289289
290290
291291
292292
293293
294294
295295
296296
297297

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:M/D:M/Y:N

7. 3 (H A L - 0 4) P OT E N T I A L I N C O N S I ST E N T VA L I DAT I O N

RU L ES FO R S H A R E R AT E M O D I F I CAT I O N S

// LOW

Description

The rebaseByShareRate function in the fstMove contract does not include a verification step to
ensure that the new share rate (nextShareRate_) adheres to a defined threshold, unlike the
rebaseByApr function which checks that the annual percentage rate (APR) does not exceed the
maxAprThreshold. This inconsistency might allow the setting of a nextShareRate_ that could be
unexpectedly high without any boundary check, potentially leading to unintended financial
implications in the contract's operations.

Code Location

The rebaseByShareRate function does not include a verification step to ensure that
nextShareRate_ adheres to a defined threshold:

BVSS

AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:M/D:M/Y:N (2.1)

Recommendation

It is recommended to introduce a similar validation mechanism in the rebaseByShareRate
function as is done in rebaseByApr. This could involve defining a maximum threshold for the share
rate increase or ensuring that the rate changes remain within certain limits to maintain
consistency and prevent extreme modifications.

 functionfunction rebaseByShareRaterebaseByShareRate((uint256uint256 nextShareRate_ nextShareRate_,, uint256uint256 upd upd
 ifif ((nextShareRate_ nextShareRate_ << lastShareRate lastShareRate)) revertrevert NegativeRebaseNNegativeRebaseN
 ifif ((updateEnd_ updateEnd_ << block block..timestamptimestamp)) revertrevert UpdateMustBeInFutUpdateMustBeInFut

 lastShareRate lastShareRate == shareRateshareRate(());;
 updateStart updateStart == block block..timestamptimestamp;;

 updateEnd updateEnd == updateEnd_ updateEnd_;;
 nextShareRate nextShareRate == nextShareRate_ nextShareRate_;;

 emitemit RebaseRebase((nextShareRate_nextShareRate_,, updateEnd_ updateEnd_));;
 }}

240240
241241
242242
243243
244244
245245
246246
247247
248248
249249
250250
251251

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:M/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:M/D:M/Y:N

7. 4 (H A L - 0 5) S H A R E R AT E EVO L U T I O N A L LOWS FO R

M O R E B U R N I N G T H A N T H E AS S E TS D E P O S I T E D

// INFORMATIONAL

Description

Since the shareRate in the fstMOVE contract is increasing, burning the quantity of assets that the
user deposited will not result in burning the full shares. Some would be left, possibly introducing
unwanted behaviours like redeeming more than entitled in the Lock contract. As a result, all users
trying to withdraw at the same time would cause a lack of liquidity that will leave some users
unable to redeem their deposit.

Based on feedback from the Thunderhead team, additional MOVE will be deposited into the
contract prior to enabling redemptions to mitigate any liquidity issues. However, it is important to
note that verifying the implementation or effectiveness of this mechanism is outside the scope of
this audit.

BVSS

AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:M (1.5)

Recommendation
It is recommended to review the intention behind the rate, mint, and burn functions and make sure
that users can only redeem what they are entitled to.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:C/Y:M

7. 5 (H A L - 0 1) FST M OV E D EST RU C T E D N OT F U L LY

I M P L E M E N T E D

// INFORMATIONAL

Description
The FSTMove contract is an ERC20 that has the particularity of implementing a destructed
feature. The contract keeps a destructed variable and will return 0 from balanceOf if the variable
is set to true.

It was found that the contract in a destructed state would still be able to execute functions such
as transferFrom, mint and burn, going against the idea of a destructed contract.

Code Location

Example of destructed usage in the balanceOf function:

Score

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
It is recommended to disallow transfers, mints and burns by adding a destructed check in the
_update function that is called by all affected functions.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial for
maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.

functionfunction balanceOfbalanceOf((addressaddress account account)) publicpublic viewview virtual virtual returnsreturns ((uu
 ifif ((destructeddestructed)) {{
 returnreturn 00;;
 }}

 returnreturn _shares _shares[[accountaccount]] ** shareRateshareRate(()) // BASE BASE;;
}}

164164
165165
166166
167167
168168
169169
170170

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

